Main Article Content

Abstract

This study aimed to investigate the protective effect of CoQ10 against cisplatin-induced cytotoxicity in male albino mice. The study was divided into two phases. In the first phase, the optimum dose of CoQ10 was selected by using gradual concentrations of the coenzyme Q10 (100, 200, 400mg/kg). The concentration of 100mg/kg showed a significant difference in reducing the abnormalities in the sperm heads. In the second stage, the interaction of the optimal concentration of CoQ10 with the mutagenic drug cisplatin [Cis-Diammine Dichloride Platinum] (CDDP) on two treatments (before and after the use of the mutagenic drug) performed to find out the mechanism by which the coenzyme works in preventing or reducing the genotoxic effect of the mutagenic drug CDDP in the event of abnormalities in the heads of the sperm, and both of the interaction treatments had a significant decrease. The results the ability of coenzyme Q10 (CoQ10) to counteract the damage caused by cisplatin by abnormalities in the sperm heads. The interaction treatment (before) was less than the interaction treatment (after) in the rate of abnormalities of the sperm heads. In addition, the results showed that the enzymatic compound has a clear protective role because of its important vital activities in protecting sperm from malformations when given before and after cisplatin.

Keywords

Sperm Cisplatin Protective effect CoQ10

Article Details

How to Cite
LAITH, Q. H., & ALSHEBANI, F. A. A.-H. H. (2022). The protective role of CoQ10 against cisplatin-induced cytotoxicity in male albino mice. Iranian Journal of Ichthyology, 9, 140–147. Retrieved from http://www.ijichthyol.org/index.php/iji/article/view/792

References

    Ahmadi, S.; Bashiri, R.; Ghadiri-Anari, A. & Nadjarzadeh, A. 2016. Antioxidant supplements and semen parameters: An evidence based review. International Journal of Reproductive BioMedicine 14(12): 729.
    Aksu, E.H.; Kandemir, F.M.; Özkaraca, M.; Ömür, A.D.; Küçükler, S. & Çomaklı, S. 2017. Rutin ameliorates cisplatin‐induced reproductive damage via suppression of oxidative stress and apoptosis in adult male rats. Andrologia 49(1): e12593.
    Alahmar, A.T. 2019. Role of oxidative stress in male infertility: an updated review. Journal of Human Reproductive Sciences 12(1): 4.
    Alleva, R.; Tomasetti, M.; Bompadre, S. & Littarru, G.P. 1997. Oxidation of LDL and their subtractions: kinetic aspects and CoQ10 content. Molecular Aspects of Medicine 18: 105-112.
    BenMeir, A.; Burstein, E.; Borrego-Alvarez, A.; Chong, J.; Wong, E.; Yavorska, T. & Jurisicova, A. 2015. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14(5): 8.
    DiNicolantonio, J.J.; Bhutani, J.; McCarty, M.F. & O'Keefe, J.H. 2015. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart 2(1): e000326.
    El-Sheikh, A.A.; Morsy, M.A.; Mahmoud, M.M. & Rifaai, R.A. 2014. Protective mechanisms of coenzyme-Q10 may involve up-regulation of testicular P-glycoprotein in doxorubicin-induced toxicity. Environmental Toxicology and Pharmacology 37(2): 772-781.
    El-Sheikh, A.A.; Morsy, M.A.; Mahmoud, M.M.; Rifaai, R.A. & Abdelrahman, A.M. 2012. Effect of coenzyme-Q10 on doxorubicin-induced nephrotoxicity in rats. Advances in Pharmacological Sciences 2012.‏
    Güleş, Ö.; Kum, Ş.; Yıldız, M.; Boyacıoğlu, M.; Ahmad, E.; Naseer, Z. & Eren, Ü. 2019. Protective effect of coenzyme Q10 against bisphenol-A-induced toxicity in the rat testes. Toxicology and Industrial Health 35(7): 466-481.‏
    Henkel, R.R. 2011. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian Journal of Andrology 13(1): 43.‏
    Hidaka, T.; Fujii, K.; Funahashi, I.; Fukutomi, N. & Hosoe, K. 2008. Safety assessment of coenzyme Q10 (CoQ10). Biofactors 32(14): 199-208.
    Hu, J.N.; Leng, J.; Shen, Q.; Liu, Y.; Li, X.D.; Wang, S.H. & Li, W. 2021. Platycodin D suppresses cisplatin‐induced cytotoxicity by suppressing ROS‐mediated oxidative damage, apoptosis, and inflammation in HEK‐293 cells. Journal of Biochemical and Molecular Toxicology 35(1): e22624.‏
    Hudson, L. & Hay, F.C. 1980. Practical Immunology. 2nd ed. Blackwell Scientific Publications, London, U.K. 229 p.
    Ko, E.Y.; Sabanegh Jr, E.S. & Agarwal, A. 2014. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertility and sterility, 102(6): 1518-1527.‏
    Kobayashi, M.; Tsuzuki, C.; Kobayashi, M.; Tsuchiya, H.; Yamashita, Y.; Ueno, K. & Hori, T. 2021. Effect of supplementation with the reduced form of coenzyme Q10 on semen quality and antioxidant status in dogs with poor semen quality: three case studies. Journal of Veterinary Medical Science 21-0174.‏
    Marnett, L.J. 2002. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181: 219-222.‏
    McCarthy, S.; Somayajulu, M.; Sikorska, M.; Borowy-Borowski, H. & Pandey, S. 2004. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicology and Applied Pharmacology 201(1): 21-31.‏
    Miesel, R.; Jedrzejczak, P.; Sanocka, D. & Kurpisz, M.K. 1997. Severe antioxidase deficiency in human semen samples with pathological spermiogram parameters. Andrologia 29(2): 77-83.‏
    Nadjarzadeh, A.; Sadeghi, M.R.; Amirjannati, N.; Vafa, M.R.; Motevalian, S.A.; Gohari, M.R. & Shidfar, F. 2011. Coenzyme Q 10 improves seminal oxidative defense but does not effect on semen parameters in idiopathic oligoasthenoteratozoospermia: A randomized double-blind, placebo controlled trial. Journal of Endocrinological Investigation 34(8): e224-e228.‏
    Nyariki, J.N.; Ochola, L.A.; Jillani, N.E.; Nyamweya, N.O.; Amwayi, P.E.; Yole, D.S. & Isaac, A.O. 2019. Oral administration of Coenzyme Q10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitology International 71: 106-120.‏
    Olegovich Bokov, D.; Jalil, A.T.; Alsultany, F.H.; Mahmoud, M.Z.; Suksatan, W.; Chupradit, S. & Delir Kheirollahi Nezhad, P. 2022. Ir-decorated gallium nitride nanotubes as a chemical sensor for recognition of mesalamine drug: a DFT study. Molecular Simulation 1-10.
    Prasad, R. & Prasad, S.B. 2021. Modulatory Effect of Rutin on the Antitumor Activity and Genotoxicity of Cisplatin in Tumor-Bearing Mice. Advanced Pharmaceutical Bulletin 11(4): 746.‏
    Sahu, S.C. & Gray, G.C. 1996. Pro-oxidant activity of flavonoids: effects on glutathione and glutathione S-transferase in isolated rat liver nuclei. Cancer Letters 104(2): 193-196.‏
    Salvio, G.; Cutini, M.; Ciarloni, A.; Giovannini, L.; Perrone, M. & Balercia, G. 2021. Coenzyme Q10 and Male Infertility: A Systematic Review. Antioxidants 10(6): 874.‏
    Santos-Ocaña, C.; Do, T.Q.; Clarke, C.F.; Padilla, S. & Navas, P. 2002. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. Journal of Biological Chemistry 277(13): 10973-10981.
    Sawhney, P.; Giammona, C.J.; Meistrich, M.L. & Richburg, J.H. 2005. Cisplatin‐induced long‐term failure of spermatogenesis in adult C57/Bl/6J mice. Journal of Andrology 26(1): 136-145.‏
    Topham, J.C. 1980. The detection of carcinogen-induced sperm head abnormalities in mice. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 69(1): 149-155.‏
    Wyrobek, A.J. & Bruce, W.R. 1975. Chemical induction of sperm abnormalities in mice. Proceedings of the National Academy of Sciences 72(11): 4425-4429.‏
    Yaripour, M.; Seidavi, A.; Dadashbeiki, M.; Laudadio, V.; Tufarelli, V.; Ragni, M. & Payan-Carreira, R. 2018. Impact of dietary supra-nutritional levels of Vitamins A and E on fertility traits of broiler breeder hens in late production phase. Agriculture 8(10): 149.‏
    Zainab, I.; Mohammed, M. & Qasim, T. 2021. Hormonal profile of men during infertility. Biochemical and Cellular Archives 21(Suppl 1): 2895-2898.
    Zhao, L. 2019. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatolian Journal of Cardiology 22(5): 232.‏