Main Article Content


The Blackspot Barb, Dawkinsia filamentosa (Valenciennes, 1844), is a shoaling fish of India. As in many ostariophysians, alarm cues released after skin injuring elicit striking anti-predator behaviour in conspecifics. The alarm substance necessary for tests was obtained from a single donor specimen (female). Each fish was tested individually (in visible light or with IR illuminators) in an aquarium with size: 105×8×20cm; water height: 8cm. The tank was subdivided in 9 parts and the stimulation (water or alarm substance) was released just under the water surface at the higher posterior right edge: the elongated shape of aquarium allowed evidencing a possible avoidance response. Fish were tested in light or dark conditions both in absence or presence of a chemical alarm cue. In both test conditions, fish behavior was monitored with a camera, which was sensitive to both infrared and visible light. In each of two experimental conditions, 12 tests were conducted. In each test, 3 consecutive registrations were made: 15 minutes in absence of stimulus, 15 minutes after administration of 50 ml of pure water, and 15 minutes after administration of a solution of 48 ml of water and 2 ml of alarm substance. Each sector of tank was correlated with a number in crescent order from 1, where administration was being carried out, to 9, in the opposite side. In each 15 minutes part of a test, fish position and associated number were relived every 30 seconds and the medium score of each fish obtained in absence of stimulus, in presence of water, and in presence of alarm substance were calculated. The medium scores obtained in presence of water and in presence of alarm substance were subtracted from the medium score obtained in absence of stimulus, obtaining a Changing Spatial Use Index. Indexes obtained for each fish (in presence of alarm substance and in presence of water) were compared with Wilcoxon test. As in others cyprinids, Blackspot Barb fright reaction differs in light or darkness. In particular, its alarm reaction in darkness seems to consist simply in moving to the bottom without any swimming rapid movements and without any avoidance component of the alarm substance.


Alarm reaction, Spatial distribution, Visual communication, Predator-prey recognition. Alarm cue Alarm reaction Spatial distribution Visual communication Predator-prey interaction.

Article Details

How to Cite
CECCOLINI, F., & PAGLIANTI, A. (2022). The role of the visual information in the fright reaction of Dawkinsia filamentosa (Valenciennes, 1844) (Teleostei: Cypriniformes: Cyprinidae). Iranian Journal of Ichthyology, 8(4), 334–341.


    Alessio, G. & Gandolfi, G. 1975. Valutazione dell’effetto della sostanza allarmante su piccoli gruppi di Ostariophysi (Teleostei) e su singoli individui. Ateneo Parmense. Acta Naturalia 11: 107-118.
    Beauchamp, D.A.; Baldwin, C.M.; Vogel, J.L. & Gubala, C.P. 1999. Estimating diel, depth-specific foraging opportunities with a visual encounter rate model for pelagic piscivores. Canadian Journal of Fisheries and Aquatic Sciences 56: 128-139.
    Berti, R. & Zorn, L. 2001. Locomotory response of the cave cyprinid Phreatichthys andruzzii to chemical signals from conspecifics and releated species: new findings. Enviromental Biology of Fishes 62: 107-114.
    Bertram, B.C.R. 1978. Living in Groups: Predators and Prey. In: Krebs, J.R. & Davies, N.B. (eds.), Behavioural Ecology: an Evolutionary Approach. Blackwell Scientific, Oxford, UK. pp. 64-96.
    Brown, G.E. & Smith, R.J.F. 1997. Conspecific skin extracts elicit antipredator responses in juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Zoology 75(11): 1916-1922. Brown, G.E.; Adrian, J.C.J.; Smith, E.; Leet, H. & Brennan, S. 2000. Ostariophysan alarm pheromones: laboratory and field tests of the functional significance of nitrogen oxides. Journal of Chemical Ecology 26:139-154.
    Brown, G.E.; Adrian, J.C.J. & Shih, M.L. 2001. Behavioral responses of fathead minnows to hypoxanthine-3-N-oxide at varying concentrations. Journal of Fish Biology 58: 1465-1470.
    Brown, G.E.; Ferrari, M.C. & Chivers, D.P. 2011. Learning about danger: chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In: Brown, C.; Laland, K. & Krause, J. (eds.), Fish Cognition and Behavior. 2nd Edition. Blackwell Scientific, Oxford, UK. pp. 59-80.
    Canzian, J.; Fontana, B.D.; Quadros, V.A. & Rosemberg, D.B. 2017. Conspecific alarm substance differently alters group behavior of zebra-fish populations: Putative involvement of cholinergic and purinergicsignaling in anxiety- and fear-like responses. Behavioral Brain Research 320: 255-263.
    Carina, V.; Weber, P.D.; Lang, C. & Baldisserotto, B. 2017. Conspecific and heterospecific alarm substances induce behavioral responses in juvenile catfish Rhamdia quelen. Neotropical Ichthyology 15(2): e160036.
    Chivers, D.P. & Smith, R.J.F. 1998. Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5: 338-352.
    Coombs, S. 2001. Smart skins: information processings by lateral line flow sensors. Autonomous robots. 11: 255-261.
    Dahanukar, N.; Raut, R. & Bhat, A. 2004. Distribution, endemism and threat status of freshwater fishes in the Western Ghats of India. Journal of Biogeography 31: 123-136.
    Ferrari, M.C.O.; Wisenden, B.D. & Chivers, D.P. 2010. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology 88(7): 698-724.
    Giaquinto, P.C. & Hoffmann, A. 2010. Role of olfaction and vision cues in feeding behavior and alarm reaction in the catfish pintado, Pseudoplatystoma corruscans. Journal of Ethology 28: 21-27.
    Guthrie, D.M. 1980. Neuroethology: an Introduction. Wiley, New York, USA.
    Hartman, E.J. & Abrahams, M.V. 2000. Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proceedings of the Royal Society of London B 267: 571-575.
    Ide, L.M.; Urbinati, E.C. & Hoffmann, A. 2003. The role of olfaction in the behavioural and physiological responses to conspecific skin extract in Brycon cephalus. Journal of Fish Biology 63: 332-343.
    Jachner, A. 1996. Alarm reaction in bleak (Alburnus alburnus (L.), Cyprinidae) in response to chemical stimuli from injured conspecifics. Hydrobiologia 325: 151-155.
    Katwate, U.; Knight, J.D.M.; Anoop, V.K.; Raghavan, R. & Dahanukar, N. 2020. Three new species of filament barbs of the genus Dawkinsia (Teleostei: Cyprinidae) from the Western Ghats of India. Vertebrate Zoology 70(2): 207-233.
    Krause, J. 1993. Trasmission of fright reaction between different species of fish. Behaviour 127: 37-48.
    Lautala, T & Hirvonen, H. 2007. Antipredator behaviour of naïve Arctic charr young in the presence of predator odours and conspecific alarm cues. Ecology of Freshwater Fish 17(1): 78-85.
    Loew, R.L. & Mcfarland, W.M. 1990. The underwater visual environment. In: Douglas, R.H. & Djamgoz, M.B.A. (eds.), the Visual System of Fish. Chapman & Hall, London, UK. pp. 1-43.
    Magurran, A.E. & Higham, H. 1988. Information transfer across fish shoals under predator threat. Ethology 78: 153-158.
    Magurran, A.E. 1989. Acquired recognition of predator odour in the European minnow (Phoxinus phoxinus). Ethology 82(3): 216-223.
    Magurran, A.E.; Irving, P.W. & Henderson, P.A. 1996. Is there a fish alarm pheromone? A wild study and critique. Proceedings of the Royal Society of London B 263: 1551-1556.
    Magurran, AE & Pitcher TJ 1987. Provenance, shoal size and the sociobiology of predator evasion behaviour in minnow shoal. Proceedings of the Royal Society of London B. 229: 439-465.
    Maximino, C.; do Carmo Silva, R.X.; Dos Santos Campos, K.; de Oliveira, J.S.; Rocha, S.P.; Pyterson, M.P.; dos Santos Souza, D.P.; Feitosa, L.M.; Ikeda, S.R.; Pimentel, A.F.N.; Ramos, P.N.F.; Costa, B.P.D.; Herculano, A.M.; Rosemberg, D.B.; Siqueira-Silva, D.H. & Lima-Maximino, M. 2018. Sensory ecology of ostariophysan alarm substances. Journal of Fish Biology 95(1): 274-286.
    Milinski, M. 1979. Can an experienced predator overcome the confusion of swarming prey more easily? Animal Behaviour 27: 1122-1126.
    Milinski, M. 1990. Information overload and food selection. In: Hughes, R.N. (ed.), and Behavioural Mechanism of Food Selection (NATO ASI Series G, Vol. 20). Springer-Verlag, Berlin, Germany. pp. 721-736.
    Miner, J.G. & Stein, R.A. 1996. Detection of predators and habitat choice by small bleugills: effects of turbidity and alternative prey. Transactions of the American Fisheries Society 125: 97-103.
    Mirza, R.S. & Chivers, D.P. 2003. Response of juvenile rainbow trout to varying concentrations of chemical alarm cue: response thresholds and survival during encounters with predators. Canadian Journal of Zoology 81(1): 88-95.
    Ohguchi, O. 1981. Prey density and selection against oddity by three-spined sticklebacks. Zeitschrift fur Tierpsychologie 23: 1-79.
    Paglianti, A; Ceccolini, F. & Berti, R 2010. Fright reaction in light and dark: how visual information availability modulates the response to chemical alarm cues. Ethology, Ecology & Evolution 22: 63-71.
    Pethiyagoda, R.; Meegaskumbura, M. & Maduwage, K. 2012. A synopsis of the South Asian fishes referred to Puntius (Pisces: Cyprinidae). Ichthyological Exploration of Freshwaters 23: 69-95.
    Pfeiffer, W. 1963. The fright reaction in North American fish. Canadian Journal of Zoology 41(1): 69-77.
    Pfeiffer, W. 1967. Fright reaction and alarm substance cells in Ostariophysi and Gonorhynchiformes. Zeitschrift fur verleichende Physiologie 56: 380-396.
    Ranåker, L.; Nilsson, P.A. & Brönmark, C. 2012. Effects of degraded optical conditions on behavioural responses to alarm cues in a freshwater fish. PloS ONE 7(6): e38411.
    Ren, Q.; Yang, L.; Chang, C.H. & Mayden, R.L. 2020. Molecular phylogeny and divergence of major clades in the Puntius complex (Teleostei: Cypriniformes). Zoologica Scripta 49(6): 697-709.
    Schutz, F. 1956. Vergleichende untersuchungen über die schreckreaktion bei fishen und deren Verbreitung. Zeitschrift fur verleichende Physiologie 38: 84-135.
    Smith, R.J.F. & Smith, J.D. 1983. Seasonal loss of alarm substance cells in Chrosomus neogaeus, Notropis venustus and N. whipplei. Copeia 1983: 822-826.
    Smith, R.J.F. 1992. Alarm signal in fishes. Reviews in Fish Biology and Fisheries 2: 33-63.
    Smith, R.J.F. 1997. Does one result trump all others? A response to Magurran, Irving and Henderson. Proceedings of the Royal Society of London B 264: 445-450.
    Speedie, N. & Gerlai, R. 2008. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behavioral Brain Research 188: 168-177.
    Suboski, M.D.; Bain, S.; Carty, A.E.; Mcquoid, L.M.; Seelen, M.I. & Seifert, M. 1990. Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology 104: 101-112.
    Swanbrow Becker, L.J. & Gabor, C.R. 2012. Effects of turbidity and visual vs. chemical cues on anti-predator response in the endangered Fountain darter (Etheostoma fonticola). Ethology 118: 994-1000.
    Thinès, G. & Vandenbussche, E. 1966. The effects of alarm substance on the schooling behaviour of Rasbora heteromorpha Duncker in day and night conditions. Animal Behaviour 14: 296-302.
    Utne, A.C.W. 1997. The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens. Journal of Fish Biology 50: 926-938.
    Verheijen, F.J. 1956. Trasmission of a flight reaction amongst a school of fish and the underlying mechanisms. Experientia 12: 202-204.
    Vogel, J.L. & Beauchamp, D.A. 1999. Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey. Canadian Journal of Fisheries and Aquatic Sciences 56: 1293-1297.
    von Frisch, K. 1938. Zur Psychologie des Fish-Schwarmes. Naturwissenschaften 26: 601-606.
    von Frisch, K. 1942. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Zeitschrift fur verleichende Physiologie 29: 46-145.
    Wisenden, B.D. & Barbour, K. 2005. Antipredator responses to skin extract of redbelly dace, Phoxinus eos, by free-ranging populations of redbelly dace and fathead minnows, Pimephales promelas. Environmental Biology of Fishes 72: 227-233.
    Wisenden, B.D. 2015. Chemical cues that indicate risk of predation. In: Sorensen, P.W & Wisenden, B.D. (eds.), Fish Pheromones and Related Cues. John Wiley & Sons, Ames, USA. pp. 131-148.
    Wisenden, B.D.; Keith, A.V. & Brown, J.L. 2004. Is there a fish alarm cue? Affirming evidence from a wild study. Animal Behaviour 67: 59-67.
    Wisenden, B.D.; Pogatshnik, J.; Gibson, D.; Bonacci, L.; Schumacher, A. & Willett, A. 2008. Sound the alarm: learned association of predation risk with novel auditory stimuli by fathead minnows (Pimephales promelas) and glowlight tetras (Hemigrammus erythrozonus) after single simultaneous pairings with conspecific chemical alarm cues. Environmental Biology of Fishes 81: 141-147.
    Yang, L.; Jiang, H.; Chen, J.; Lei, Y.; Sun, N.; Lv, W.; Near, T.J. & He, S. 2019. Comparative Genomics Reveals Accelerated Evolution of Fright Reaction Genes in Ostariophysan Fishes. Frontiers in Genetics 10:1283.