Main Article Content
Abstract
The present study deals with optimization and mathematical modeling of the extraction process of total phenolic compounds from wild onion (Urginea maritima) pulps collected from lawns and mountains of Kurdistan region of Iraq. Effect of solvent type, extraction time and the kinetics of the extraction process were investigated throughout preliminary experiments, then 16 extraction experiments were conducted based on an adopted experimental design to model and optimization the extraction temperature, acid catalyst: solvent, and solid: liquid ratios using response surface methodology. The total phenols were quantified for each experiment and the experimental total phenols yields were analyzed. The experimental results indicated that total phenols yield ranged from 85.0.4 to 303.27mg GAE/g obtained at 46.5oC, 0.6 acid: solvent (ml/20ml), 0.02 solid/liquid (g: ml), and 65oC, 0.2 acid: solvent (ml/20ml), 0.1 solid: liquid (g: ml), respectively. The response analysis results showed that solid: solvent ratio is the most significant parameter affected positively the total phenols yield followed by acid: solvent ratio with negative effect. The model analysis estimated an optimum value of total phenols 1541.37mg GAE/g reflecting that more than 4 times increase in total phenols yield could be achieved without acidification at 69.84oC and 0.12 solid/liquid ratio. The optimized results are important from economical point of view for cost reduction of the extraction process as the yield of extraction could be promoted without using the acid catalyst.
Keywords
Article Details
The authors transfer the copyrights of their papers to the Iranian Society of Ichthyology. However, the information could be used in accordance with the Creative Commons licence (Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
References
-
Abdul Qadir, M.; Asad, B.; Adil M. & Shabnam, S. 2017. Evaluation of Phenolic Compounds and Antioxidant and Antimicrobial Activities of Some Common Herbs. International Journal of Analytical Chemistry. Article ID 3475738.
Albadran, F. & Kamal, I. 2020. Synthesis of green silver nanoparticles by one pot microwave-assisted technique: Modeling and optimization. Periodicals of Engineering and Natural Sciences 8(3): 1591-1599.
Alov, P.; Tsakovska I. & Pajeva I. 2015. Computational Studies of Free radical-Scavenging Properties of Phenolic Compounds. Current Topics in Medicinal Chemistry 15(2): 85-104.
Babbar, N. & Harinder, S. 2014. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. Journal of Food Science and Technology 51(10): 2568-2575.
Benkeblia, N. 2005. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Archives of Biology and Technology 48: 753-759.
Bystrická, J.; Kavalcová, P.; Vollmannová, A.; Tomáš, J. & Orsák, M. 2014. The role of sulphur on the content of total polyphenols and antioxidant activity in onion (Allium cepa L.). Potravinarstvo 8(1): 284-289.
Chemat, F.; Rombaut, N.; Meullemiestr, A.; Turk, M.; Perino, S.; Fabiano-T. & Abert-Vian, M. 2017. Review of Green Food Processing techniques. Preservation, transformation and extraction. Innovative Food Science and Emerging Technologies 41: 357-377.
Cheng, A., Xiangyan, C., Qiong, J., Wenliang, W., John, S. & Yaobo, L. (2013). Comparison of Phenolic Content and Antioxidant Capacity of Red and Yellow Onions. Czech Journalof Food Sciences 31(5): 501-508.
Claudine, M.; Augustin, S.; Christine M.; Christian. R. & Dai, J. 2010. Plant phenolic: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352.
Durling, N. & Catchpole Grey, J.B. 2007. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chemistry 101(4): 1417-1424.
Eun, I.; Eun, M.; Young, S. & Byung Y. 2012. The role of gamma irradiation on the extraction of phenolic compounds in onion (Allium cepa L.) Radiation Physics and Chemistry 81(8): 1025-1028.
Ghasemzadeh, A. & Jaafar, H. 2014. Optimization of reflux conditions for total flavonoid and total phenolic extraction and enhanced antioxidant capacity in Pandan (Pandanus amaryllifolius Roxb.) using response surface methodology. The Scientific World Journal.
Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B. & Smith, B. 2002. Onions-a global benefit to health. Phytotherapy Research 16: 603-615.
Ignat, I.; Volf, I. & Popa, V. 2011. A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chemistry 126: 1821-1835.
Issa, M.; karabet, F. & Aljoubbeh, M. 2013. Total polypheonls, flavonoid content, kaempferol concentration and antioxidant activity of two onion Syrian (Spring and White). International Journal of ChemTech Research 5(5): 2375-2380.
Issa, N.; Abdul Jabar, R.; Hammo, Y. & Kamal, I. 2016. Antioxidant activity of apple peels bioactive molecules extractives. Journal of Science and Technology 6(3): 76-88.
James, L. 2008. Onions and Other Vegetable Alliums. 2nd Ed., Biddles Ltd, Kings lynn UK.
Jin, E.; Seokwon, L.; Sang, O.; Young-Seo, P.; Jae, K.; Myong-Soo, C.; Hoon, P.; Kun-Sub, S. & Young, J. 2011. Optimization of Various Extraction Methods for Quercetin from Onion Skin Using Response Surface Methodology. Food Science and Biotechnology 20(6): 1727-1733.
Junji, T. 2017. Factors affecting bioavailability of plant polyphenols. Biochemical Pharmacology 139: 105-106.
Kamal, I.; Khaoula, E.; Ahmed, B. & Karim, A. 2015. Innovative Process of texturing-assisted solvent extraction: impacts on polyphenols, flavonoids, tannins and antioxidant of henna. International Journal of Emerging Technology and Advanced Engineering 5(3): 403-416.
Kassing, M.; Jenelten Schenk, U. & Strube, J. 2010. A New Approach for Process Development of Plant-Based Extraction Processes. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology 33(3): 377-387.
Kavalcová, P.; Bystrická, J.; Trebichalský, P.; Kopernická, M.; Hrstková, M. & Lenková, M. 2015. Content of total polyphenols and antioxidant activity in selected varieties of onion (Allium cepa L.). Potravinarstvo Slovak Journal of Food Sciences 9(1): 494-500.
Kirtikar, K.R. & Basu B.D. 1993. Indian Medicinal Plants. 2nd Ed. India: Lalit Mohan Basu, Allahabad, India 4: 2511.
Lachman, J.; Pronek, D.; Hejtmánková, A.; Dudjak, J.; Pivec, V. & Faitová, K. 2003. Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Horticultural Science 30(4): 142- 147.
Lepojevic, Z.; Srdjenovic, B.; Vladic, J. & Sudji, J. 2012. Effects of different extraction methods and conditions on the phenolic composition of mate tea extracts. Molecules 17: 2518-2528.
Liguori, L.; Califon, R.; Albanese, D.; Raimo, F.; Crescitelli, A. & Di Matteo, M. 2017. chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. Journal of Food Quality Article ID 6873651
Liliana J. 2004. Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition 79(5): 727-747.
Manach, C.; Scalbert, A.; Morand, C.; Remesy, C. & Jimenez, L. 2004. Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition 79(5): 727- 747.
Lutz, M.; Fuentes, E.; Ávila, F.; Alarcón, M. & Palomo, I. 2019. Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules 24(2): 366.
Machavarapu1, M.; Manoj, K. & Vangalapati M. 2013. Optimization of physico-chemical parameters for the extraction of flavonoids and phenolic components from the skin of Allium cepa. International Journal of Innovative Research in Science, Engineering and Technology 2(7): 3125-3129.
Mokrani, A. & Madani, K. 2016. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology 162(13): 68-76.
Ozcan, M.; Dogu, S. & Uslu, N. 2018. Effect of species on total phenol, antioxidant activity and phenolic compounds of different wild onion bulbs. Journal of Food Measurement and Characterization 12: 902-905.
Prakash, D.; Singh, B. & Upadhyah, G. 2007. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry 102(4): 1389-1393.
Priecina, L. & Karlina, D. 2013. Total Polyphenol, Flavonoid Content and Antiradical Activity of Celery, Dill, Parsley, Onion and Garlic Dried in Convective and Microwave-Vacuum Dryers. 2nd International Conference on Nutrition and Food Sciences IPCBEE Vol. 53, IACSIT Press, Singapore.
Ronald, R. 2014. Polyphenols in Plants; Isolation, Purification and Extract Preparation. Academic Press.
Rafiee, Z.; Jafari, S.; Alami, M. & Khomeiri, M. 2011. Microwave-Assisted Extraction of Phenolic Compounds from Olive Leaves; a Comparison with Maceration. Journal of Animal and Plant Sciences 21(4): 738-745.
Sibtain, M.; Tanveer, A.; Javaid, M. & Ali, H. 2015. Wild onion (Asphodelus tenuifolius) competition in rain fed hick pea-chickpea cropping system. Planta Daninha, Viçosa-MG 33(1): 67-75.
Simeonov, E.; Tsibranska, I. & Minchev, A. 1999. Solid ± liquid extraction from plants Ð experimental kinetics and modeling. Chemical Engineering Journal 73: 255-259.
Spigno, G.; Tramelli, L. & De-Faveri, D. 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81: 200-208.
Strati, I.; Kostomitsopoulos, G.; Lytras, F.; Zoumpoulakis P.; Proestos, C. & Sinanoglou, V. 2018. Optimization of Polyphenol Extraction from Allium ampeloprasum var. porrum through Response Surface Methodology. Foods 7: 162.
Valdes, A.; Vidal, L.; Beltrán, A.; Antonio, C. & Garrigós, M. 2015. Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach. Journal of Agricultural and Food Chemistry 63(22): 5395-5402
Varinder, S.; Krishan, P. & Richa, S. 2017. Extraction of antioxidant phytoconstituents from onion waste. Journal of Pharmacognosy and Phytochemistry 6(1): 502-505.
References
Albadran, F. & Kamal, I. 2020. Synthesis of green silver nanoparticles by one pot microwave-assisted technique: Modeling and optimization. Periodicals of Engineering and Natural Sciences 8(3): 1591-1599.
Alov, P.; Tsakovska I. & Pajeva I. 2015. Computational Studies of Free radical-Scavenging Properties of Phenolic Compounds. Current Topics in Medicinal Chemistry 15(2): 85-104.
Babbar, N. & Harinder, S. 2014. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. Journal of Food Science and Technology 51(10): 2568-2575.
Benkeblia, N. 2005. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Brazilian Archives of Biology and Technology 48: 753-759.
Bystrická, J.; Kavalcová, P.; Vollmannová, A.; Tomáš, J. & Orsák, M. 2014. The role of sulphur on the content of total polyphenols and antioxidant activity in onion (Allium cepa L.). Potravinarstvo 8(1): 284-289.
Chemat, F.; Rombaut, N.; Meullemiestr, A.; Turk, M.; Perino, S.; Fabiano-T. & Abert-Vian, M. 2017. Review of Green Food Processing techniques. Preservation, transformation and extraction. Innovative Food Science and Emerging Technologies 41: 357-377.
Cheng, A., Xiangyan, C., Qiong, J., Wenliang, W., John, S. & Yaobo, L. (2013). Comparison of Phenolic Content and Antioxidant Capacity of Red and Yellow Onions. Czech Journalof Food Sciences 31(5): 501-508.
Claudine, M.; Augustin, S.; Christine M.; Christian. R. & Dai, J. 2010. Plant phenolic: extraction, analysis and their antioxidant and anticancer properties. Molecules 15: 7313-7352.
Durling, N. & Catchpole Grey, J.B. 2007. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chemistry 101(4): 1417-1424.
Eun, I.; Eun, M.; Young, S. & Byung Y. 2012. The role of gamma irradiation on the extraction of phenolic compounds in onion (Allium cepa L.) Radiation Physics and Chemistry 81(8): 1025-1028.
Ghasemzadeh, A. & Jaafar, H. 2014. Optimization of reflux conditions for total flavonoid and total phenolic extraction and enhanced antioxidant capacity in Pandan (Pandanus amaryllifolius Roxb.) using response surface methodology. The Scientific World Journal.
Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B. & Smith, B. 2002. Onions-a global benefit to health. Phytotherapy Research 16: 603-615.
Ignat, I.; Volf, I. & Popa, V. 2011. A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chemistry 126: 1821-1835.
Issa, M.; karabet, F. & Aljoubbeh, M. 2013. Total polypheonls, flavonoid content, kaempferol concentration and antioxidant activity of two onion Syrian (Spring and White). International Journal of ChemTech Research 5(5): 2375-2380.
Issa, N.; Abdul Jabar, R.; Hammo, Y. & Kamal, I. 2016. Antioxidant activity of apple peels bioactive molecules extractives. Journal of Science and Technology 6(3): 76-88.
James, L. 2008. Onions and Other Vegetable Alliums. 2nd Ed., Biddles Ltd, Kings lynn UK.
Jin, E.; Seokwon, L.; Sang, O.; Young-Seo, P.; Jae, K.; Myong-Soo, C.; Hoon, P.; Kun-Sub, S. & Young, J. 2011. Optimization of Various Extraction Methods for Quercetin from Onion Skin Using Response Surface Methodology. Food Science and Biotechnology 20(6): 1727-1733.
Junji, T. 2017. Factors affecting bioavailability of plant polyphenols. Biochemical Pharmacology 139: 105-106.
Kamal, I.; Khaoula, E.; Ahmed, B. & Karim, A. 2015. Innovative Process of texturing-assisted solvent extraction: impacts on polyphenols, flavonoids, tannins and antioxidant of henna. International Journal of Emerging Technology and Advanced Engineering 5(3): 403-416.
Kassing, M.; Jenelten Schenk, U. & Strube, J. 2010. A New Approach for Process Development of Plant-Based Extraction Processes. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology 33(3): 377-387.
Kavalcová, P.; Bystrická, J.; Trebichalský, P.; Kopernická, M.; Hrstková, M. & Lenková, M. 2015. Content of total polyphenols and antioxidant activity in selected varieties of onion (Allium cepa L.). Potravinarstvo Slovak Journal of Food Sciences 9(1): 494-500.
Kirtikar, K.R. & Basu B.D. 1993. Indian Medicinal Plants. 2nd Ed. India: Lalit Mohan Basu, Allahabad, India 4: 2511.
Lachman, J.; Pronek, D.; Hejtmánková, A.; Dudjak, J.; Pivec, V. & Faitová, K. 2003. Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Horticultural Science 30(4): 142- 147.
Lepojevic, Z.; Srdjenovic, B.; Vladic, J. & Sudji, J. 2012. Effects of different extraction methods and conditions on the phenolic composition of mate tea extracts. Molecules 17: 2518-2528.
Liguori, L.; Califon, R.; Albanese, D.; Raimo, F.; Crescitelli, A. & Di Matteo, M. 2017. chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. Journal of Food Quality Article ID 6873651
Liliana J. 2004. Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition 79(5): 727-747.
Manach, C.; Scalbert, A.; Morand, C.; Remesy, C. & Jimenez, L. 2004. Polyphenols: food sources and bioavailability. American Journal of Clinical Nutrition 79(5): 727- 747.
Lutz, M.; Fuentes, E.; Ávila, F.; Alarcón, M. & Palomo, I. 2019. Roles of Phenolic Compounds in the Reduction of Risk Factors of Cardiovascular Diseases. Molecules 24(2): 366.
Machavarapu1, M.; Manoj, K. & Vangalapati M. 2013. Optimization of physico-chemical parameters for the extraction of flavonoids and phenolic components from the skin of Allium cepa. International Journal of Innovative Research in Science, Engineering and Technology 2(7): 3125-3129.
Mokrani, A. & Madani, K. 2016. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology 162(13): 68-76.
Ozcan, M.; Dogu, S. & Uslu, N. 2018. Effect of species on total phenol, antioxidant activity and phenolic compounds of different wild onion bulbs. Journal of Food Measurement and Characterization 12: 902-905.
Prakash, D.; Singh, B. & Upadhyah, G. 2007. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry 102(4): 1389-1393.
Priecina, L. & Karlina, D. 2013. Total Polyphenol, Flavonoid Content and Antiradical Activity of Celery, Dill, Parsley, Onion and Garlic Dried in Convective and Microwave-Vacuum Dryers. 2nd International Conference on Nutrition and Food Sciences IPCBEE Vol. 53, IACSIT Press, Singapore.
Ronald, R. 2014. Polyphenols in Plants; Isolation, Purification and Extract Preparation. Academic Press.
Rafiee, Z.; Jafari, S.; Alami, M. & Khomeiri, M. 2011. Microwave-Assisted Extraction of Phenolic Compounds from Olive Leaves; a Comparison with Maceration. Journal of Animal and Plant Sciences 21(4): 738-745.
Sibtain, M.; Tanveer, A.; Javaid, M. & Ali, H. 2015. Wild onion (Asphodelus tenuifolius) competition in rain fed hick pea-chickpea cropping system. Planta Daninha, Viçosa-MG 33(1): 67-75.
Simeonov, E.; Tsibranska, I. & Minchev, A. 1999. Solid ± liquid extraction from plants Ð experimental kinetics and modeling. Chemical Engineering Journal 73: 255-259.
Spigno, G.; Tramelli, L. & De-Faveri, D. 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81: 200-208.
Strati, I.; Kostomitsopoulos, G.; Lytras, F.; Zoumpoulakis P.; Proestos, C. & Sinanoglou, V. 2018. Optimization of Polyphenol Extraction from Allium ampeloprasum var. porrum through Response Surface Methodology. Foods 7: 162.
Valdes, A.; Vidal, L.; Beltrán, A.; Antonio, C. & Garrigós, M. 2015. Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach. Journal of Agricultural and Food Chemistry 63(22): 5395-5402
Varinder, S.; Krishan, P. & Richa, S. 2017. Extraction of antioxidant phytoconstituents from onion waste. Journal of Pharmacognosy and Phytochemistry 6(1): 502-505.