Main Article Content

Abstract

This study aimed to produce a new adsorbent from the thick leaves that fall off Oak trees in the autumn season, which were activated by heating at several temperatures (700-900°C) after being treated with a KOH compound to obtain activated carbon (AC). It was subsequently composited with iron oxide magnetite nanoparticles (AC/Fe3O4) using the co-precipitation technique to remove Pb (II) ions from aqueous solutions in batch mode. Utilizing XRD, BET, FTIR, SEM/EDS, TEM, VSM, and TGA, the adsorbent was characterized. Variables such as contact time, PH, adsorbate concentration, temperature, and adsorbent dose were used to conduct adsorption studies of divalent lead from an aqueous solution. The optimal adsorption efficiency was found at a contact time of 60 minutes, a pH of 8, a dose of 0.4 g/L adsorbent, an initial metal ion concentration of 100mg/L, and a temperature of 25°C. The adsorption kinetic of Pb(II) onto adsorbent (AC/Fe3O4 at 800oC) was discussed using different models, the pseudo-second-order model provided the best correlation of the experimental data. Langmuir, Freundlich, and Tempkin adsorption isotherms were employed in order to evaluate the optimum adsorption capacity of the adsorbent, the Freundlich model gave a better fit than Langmuir and Tempkin models. The results demonstrated that (AC/Fe3O4 at 800°C) can be utilized efficiently to remove Pb(II) from polluted water.

Keywords

Activated carbon Iron oxide nanoparticles pH TEM XRD

Article Details

How to Cite
ABDULQADER, W. H., & ABBAS, J. A. (2023). Oak tree leaves activated carbon with magnetite nanoparticles for the removal of Pb(II) ions from aqueous solutions. Iranian Journal of Ichthyology, 10(Special Issue 1), 219–237. Retrieved from https://www.ijichthyol.org/index.php/iji/article/view/954

References

  1. Adebayo, A.O. 2013. Investigation on Pleurotus ferulae potential for the sorption of Pb (II) from aqueous solution. Bulletin of the Chemical Society of Ethiopia 27(1): 25-34.
  2. Aworn, A.; Thiravetyan, P. & Nakbanpote, W. 2008. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores. Journal of Analytical and Applied Pyrolysis 82(2): 279-285.
  3. Bakatula, E.N.; Richard, D.; Neculita, C.M. & Zagury, G.J. 2018. Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research 25: 7823-7833.
  4. Budinova, T.; Savova, D.; Tsyntsarski, B.; Ania, C.O.; Cabal, B.; Parra, J.B. & Petrov, N. 2009. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied Surface Science 255(8): 4650-4657.
  5. Crini, G.; Peindy, H.N.; Gimbert, F. & Robert, C. 2007. Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Separation and Purification Technology 53(1) 97-110.
  6. Dave, P.N. & Chopda, L.V. 2014. Application of iron oxide nanomaterials for the removal of heavy metals. Journal of Nanotechnology 2014.
  7. Demirbas, A. 2009. Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. Journal of Hazardous Materials 167(1-3): 1-9.
  8. Deng, H.; Yang, L.; Tao, G. & Dai, J. 2009. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials 166(2-3): 1514-1521.
  9. Dunlop, D.J. & Özdemir, Ö. 2001. Rock magnetism: fundamentals and frontiers (No. 3). Cambridge University Press.
  10. El Nemr, A. 2007. Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chemistry and Ecology 23(5): 409-425.
  11. El Nemr, A. 2009. Potential of pomegranate husk carbon for Cr (VI) removal from wastewater: Kinetic and isotherm studies. Journal of Hazardous Materials 161(1): 132-141.
  12. El Qada, E.N.; Allen, S.J. & Walker, G.M. 2006. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chemical Engineering Journal 124(1-3): 103-110.
  13. Ferdous, D.; Dalai, A.K.; Bej, S.K. & Thring, R.W. 2002. Pyrolysis of lignins: experimental and kinetics studies. Energy & Fuels 16(6): 1405-1412.
  14. Freundlich, H. 1907. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie 57(1): 385-470.
  15. Ghasemi, N.; Ghasemi, M.; Moazeni, S.; Ghasemi, P.; Alharbi, N.S.; Gupta, V.K. & Tkachev, A.G. 2018. Zn (II) removal by amino-functionalized magnetic nanoparticles: Kinetics, isotherm, and thermodynamic aspects of adsorption. Journal of Industrial and Engineering Chemistry 62: 302-310.
  16. Girgis, B.S.; Smith, E.; Louis, M.M. & El-Hendawy, A.N.A. 2009. Pilot production of activated carbon from cotton stalks using H3PO4. Journal of analytical and applied pyrolysis, 86(1), 180-184.
  17. Gong, G.Z.; Qiang, X.; Zheng, Y.F.; Ye, S.F. & Chen, Y.F. 2009. Regulation of pore size distribution in coal-based activated carbon. New Carbon Materials 24(2): 141-146.
  18. Gupta, V.K. & Nayak, A. 2012. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal 180: 81-90.
  19. Ho, Y.S. & McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.
  20. Ho, Y.S. 2003. Removal of copper ions from aqueous solution by tree fern. Water Research 37(10): 2323-2330.
  21. Humphrey, J.L. & Keller, G.E. 1997. Separation process technology (pp. 113-151). New York: McGraw-Hill.
  22. Ilankoon, N. 2014. Use of iron oxide magnetic nanosorbents for Cr (VI) removal from aqueous solutions: A review. Journal of Engineering Research and Applications 4(10): 55-63.
  23. Imran, M.; Anwar, K.; Akram, M.; Shah, G.M.; Ahmad, I.; Samad Shah, N. & Schotting, R.J. 2019. Biosorption of Pb (II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies. International Journal of Phytoremediation 21(8): 777-789.
  24. Imran, M.; Khan, Z.U.H.; Iqbal, J.; Shah, N.S.; Muzammil, S.; Ali, S. & Rizwan, M. 2020. Potential of siltstone and its composites with biochar and magnetite nanoparticles for the removal of cadmium from contaminated aqueous solutions: batch and column scale studies. Environmental Pollution 259: 113938.
  25. Imran, M.; Khan, Z.U.H.; Iqbal, M.M.; Iqbal, J.; Shah, N.S.; Munawar, S. & Rizwan, M. 2020. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr (VI) from contaminated water: a batch and column scale study. Environmental Pollution 261: 114231.
  26. Iqbal, J.; Shah, N.S.; Sayed, M.; Imran, M.; Muhammad, N.; Howari, F.M. & Haija, M.A. 2019. Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. Journal of Cleaner Production 235: 875-886.
  27. Ismadji, S.; Sudaryanto, Y.; Hartono, S.B.; Setiawan, L.E.K. & Ayucitra, A.J.B.T. 2005. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Bioresource Technology 96(12): 1364-1369.
  28. Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V.K. & Sillanpää, M. 2018. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr (VI), Cu (II) and Cd (II) ions from aqueous solution. Water Resources and Industry 20: 54-74.
  29. Juan, Y. & Ke-Qiang, Q. 2009. Preparation of activated carbon by chemical activation under vacuum. Environmental Science & Technology 43(9): 3385-3390.
  30. Karaca, M. 2008. Biosorption of aqueus Pb2+, Cd2+, and Ni2+ ions by Dunaliella salina, Oocystis sp., Porphyridium cruentum, and Scenedesmus protuberans prior to atomic spectrometric determination (Doctoral dissertation, Izmir Institute of Technology (Turkey)).
  31. Karagöz, S.; Tay, T.; Ucar, S. & Erdem, M. 2008. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology 99(14): 6214-6222.
  32. Katsaros, F.K.; Steriotis, T.A.; Romanos, G.E.; Konstantakou, M.; Stubos, A.K. & Kanellopoulos, N. K. 2007. Preparation and characterisation of gas selective microporous carbon membranes. Microporous and Mesoporous Materials 99(1-2): 181-189.
  33. Kaur, M.; Kumar, M.; Sachdeva, S. & Puri, S.K. 2018. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresource Technology 251: 390-402.
  34. Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology 98(1): 14-21.
  35. Li, X.; Qiu, J.; Hu, Y.; Ren, X.; He, L.; Zhao, N. & Zhao, X. 2020. Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties. Adsorption Science & Technology 38(9-10): 450-463.
  36. Lin, S.H. & Juang, R.S. 2009. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. Journal of Environmental Management 90(3): 1336-1349.
  37. Liu, Y.; Chen, M. & Yongmei, H. 2013. Study on the adsorption of Cu (II) by EDTA functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal 218: 46-54.
  38. Lu, X.; Jiang, J.; Sun, K. & Xie, X. 2014. Preparation and characterization of sisal fiber-based activated carbon by chemical activation with zinc chloride. Bulletin of the Korean Chemical Society 35(1): 103-110.
  39. Malarvizhi, R. & Sulochana, N. 2008. Sorption isotherm and kinetic studies of methylene blue uptake onto activated carbon prepared from wood apple shell. Journal of Environmental Protection Science 2: 40-46.
  40. Malik, P.K. 2003. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes and Pigments 56(3): 239-249.
  41. Mall, I.D.; Srivastava, V.C.; Agarwal, N.K. & Mishra, I.M. 2005. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61(4): 492-501.
  42. Muhamad, S.G.; Esmail, L.S. & Hasan, S.H. 2016. Kinetic studies of bioethanol production from wheat straw. ZANCO Journal of Pure and Applied Sciences 28(3): 97-103.
  43. Ojemaye, M.O.; Okoh, O.O. & Okoh, A.I. 2017. Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: Progress and prospects. Materials Express 7(6): 439-456.
  44. Oliveira, L.C.,; Goncalves, M.; Oliveira, D.Q.; Guerreiro, M.C.; Guilherme, L.R. & Dallago, R.M. 2007. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. Journal of Hazardous Materials 141(1): 344-347.
  45. Rampe, M.J.; Santoso, I.R.; Rampe, H.L.; Tiwow, V.A. & Apita, A. 2021. Infrared Spectra Patterns of Coconut Shell Charcoal as Result of Pyrolysis and Acid Activation Origin of Sulawesi, Indonesia. In E3S Web of Conferences (Vol. 328, p. 08008). EDP Sciences.
  46. Redlich, O.J.D.L. & Peterson, D.L. 1959. A useful adsorption isotherm. Journal of Physical Chemistry 63(6): 1024-1024.
  47. Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Lehocine, M.B.; Dubois, M. & Duclaux, L. 2010. Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials 175(1-3): 779-788.
  48. Rufford, T.E.; Hulicova-Jurcakova, D.; Zhu, Z. & Lu, G.Q. 2009. Empirical analysis of the contributions of mesopores and micropores to the double-layer capacitance of carbons. The Journal of Physical Chemistry C 113(44): 19335-19343.
  49. Saeed, A.; Akhter, M.W. & Iqbal, M. 2005. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology 45(1): 25-31.
  50. Saleh, T.A. & Gupta, V.K. 2012. Column with CNT/magnesium oxide composite for lead (II) removal from water. Environmental Science and Pollution Research 19: 1224-1228.
  51. Sanchez, C.; Arribart, H. & Giraud Guille, M.M. 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials 4(4): 277-288.
  52. Sharififard, H.; Nabavinia, M. & Soleimani, M. 2017. Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution. Advances in Environmental Technology 2(4): 215-227.
  53. Spahis, N.; Addoun, A., Mahmoudi, H. & Ghaffour, N. 2008. Purification of water by activated carbon prepared from olive stones. Desalination 222(1-3): 519-527.
  54. Tahir, B. & Mezori, H.A. 2020. Bioethanol production from Quercus aegilops using Pichia stipitis and Kluyveromyces marxianus. Biomass Conversion and Biorefinery 1-10.
  55. Temkin, M.J. & Pyzhev, V. 1940. Recent modifications to Langmuir isotherms.
  56. Tran, D.L.; Le, V.H.; Pham, H.L.; Hoang, T.M.N.; Nguyen, T.Q.; Luong, T.T. & Nguyen, X.P. 2010. Biomedical and environmental applications of magnetic nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology 1(4): 045013.
  57. Vazquez, G.; Gonzalez-Alvarez, J.; Freire, S.; López-Lorenzo, M. & Antorrena, G. 2002. Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology 82(3): 247-251.
  58. Venn, R.F. 2008. Principles and practice of bioanalysis. CRC Press.
  59. Wang, G.; Li, W.; Li, B. & Chen, H. 2008. TG study on pyrolysis of biomass and its three components under syngas. Fuel 87(4-5): 552-558.
  60. Wang, S.; Zhu, Z.H.; Coomes, A.; Haghseresht, F. & Lu, G.Q. 2005. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid and Interface Science 284(2): 440-446.
  61. Wibowo, N.; Setyadhi, L.; Wibowo, D.; Setiawan, J. & Ismadji, S. 2007. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. Journal of Hazardous Materials 146(1-2): 237-242.
  62. Yao, X.; Xu, K. & Liang, Y. 2016. Comparing the thermo-physical properties of rice husk and rice straw as feedstock for thermochemical conversion and characterization of their waste ashes from combustion. BioResources 11(4): 10549-10564.
  63. Zhang, H.; Li, X.; He, G.; Zhan, J. & Liu, D. 2013. Preparation of magnetic composite hollow microsphere and its adsorption capacity for basic dyes. Industrial & Engineering Chemistry Research 52(47): 16902-16910.