Main Article Content

Abstract

This study aimed to examine the role of aspirin (ASA, acetylsalicylic acid) in mediating the response of Cucumis melo (muskmelon) to variable levels of salinity stress. The study examined the impact of aspirin on the growth parameters, photosynthetic pigments, and total sugars of muskmelon plants subjected to salt stress. Five saline concentrations (NaCl solutions) of 0, 50, 100, 150, and 200 mmol were used as the stress stimulant, and five saline concentrations were combined with aspirin (10ppm) as an alleviation treatment. The findings showed that aspirin increased the activity of photosynthetic pigments and growth parameters, and lowering the overall sugar content, hence positively influencing salt tolerance. The results also showed an increase in the negative effect of salinity as the level of salinity increased. In the first group, adding aspirin to the second group and comparing it with non-aspirin treatment, we found that aspirin reduced salinity's negative effect. The results give insightful data and new methods using aspirin solution as a salinity treatment for future cultivation resistant to salt and yields of muskmelon.


 

Keywords

Muskmelon Acetyl Salicylic Acid Salt stress Photosynthesis

Article Details

How to Cite
Mohammed, S. J. ., Fadhil, A. A., & Fayed, M. I. (2023). The effect of aspirin on the Muskmelon plant, Cucumis melo under different levels of salt stress. Iranian Journal of Ichthyology, 10(Special Issue 1), 318–326. Retrieved from https://www.ijichthyol.org/index.php/iji/article/view/1011

References

  1. Alrashedi, H.S.; Al-Ataie, S.S.K.; Banoon, S.R. & Fayed, M.I. 2021. Potential role of medicinal plants for the treatment of respiratory viruses: A review. Egyptian Journal of Chemistry 64(12): 7495-7508.‏
  2. Arif, Y.; Sami, F.; Siddiqui, H.; Bajguz, A. & Hayat, S. 2020. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany 175: 104040.
  3. Benouis, K.; Khane, Y.; Ahmed, T.; Albukhaty, S. & Banoon, S.R. 2022. Valorization of diatomaceous earth as a sustainable eco-coagulant for wastewater treatment: optimization by response surface methodology. Egyptian Journal of Chemistry 65(9): 777-788.‏
  4. Bharti, A. & Garg, N. 2019. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress. Ecotoxicology and Environmental Safety 178: 66-78.
  5. Dong, C.J.; Wang, X.L. & Shang, Q.M. 2011. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae129: 629-636.
  6. DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry 28(3): 350-356.
  7. Fadhil A.A.; Swaid, S.Y.; Mohammed, S.J. & Al-Abboodi, A. 2024. Impact of Salinity on Tomato Seedling Development: A Comparative Study of Germination and Growth Dynamics in Different Cultivars. Journal of Chemical Health Risks 14(1): 183-190.
  8. FAO. 2014. Food and Agriculture Organization of the United Nations. Retrieved from www.faostat.fao.org
  9. Garg, N. & Bharti, A. 2018. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28: 727-746.
  10. Guzmán-Murillo, M.A.; Ascencio, F.; Larrinaga-Mayoral, J.A. Guzmán-Murillo, M.A.; Ascencio, F. & Larrinaga-Mayoral, J.A. 2013. Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma 250: 33-42.
  11. Hamann T. 2015. The plant cell wall integrity maintenance mechanism Concepts for organization and mode of action. Plant Cell Physiology 56: 215-223.
  12. Hasan, F. & Mohaddeseh, S.S. 2011. Effects of foliar application of salicylic acid on vegetative growth of maize under saline conditions. African Journal of Plant Science 5: 575-578.
  13. Hayat, Q.; Hayat, S.; Irfan, M. & Ahmad, A. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany 68: 14-25.
  14. Hazell, P. & Wood, S. 2008. Drivers of change in global agriculture. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 363: 495-515.
  15. Horváth, E.; Csiszár, J.; Gallé, Á.; Poór, P.; Szepesi, Á. & Tari, I. 2015. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology 183: 54-63.
  16. Jia, X.-M.; Wang, H.; Svetla, S.; Zhu, Y.-F.; Hu, Y.; Cheng, L.; Zhao, T.; and Wang, Y.-X. 2019. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Scientia Horticulturae 245: 154-162.
  17. Khan, M. N.; Li, Y.; Khan, Z.; Chen, L.; Liu, J.; Hu, J.; Wu, H. & Li, Z. 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology19: 276.
  18. Lichtenthaler, H.K. & Wellburn, A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11(5): 591-592.
  19. Liu, J.; Li, L.; Yuan, F. & Chen, M. 2019. Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signaling and Behavior 14: e1644595.
  20. Liu, S.; Dong, Y.; Xu, L. & Kong, J. 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation 73: 67-78.
  21. Liu, Z.; Ma, C.; Hou, L.; Wu, X.; Wang, D.; Zhang, L. & Liu, P. 2022. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis. International Journal of Molecular Sciences 23: 3293.
  22. Luo, X.; Dai, Y.; Zheng, C.; Yang, Y.; Chen, W.; Wang, Q.; Chandrasekaran, U.; Du, J.; Liu, W. & Shu, K. 2021. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist 229: 950-962.
  23. Manishankar, P.; Wang, N.; Köster, P.; Alatar, A.A. & Kudla, J. 2018. Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany 69: 4215-4226.
  24. Misra, N. & Saxena, P. 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science 177: 181-189.
  25. Mohammed, S.J. & Nulit, R. (2019 a). Impact of NaCl, MgCl2 and CaCl2 on seed germination and seedling growth on turnip (Brassica rapa rapa).‏ Plant Archives 19(1): 1041-1047.
  26. Mohammed, S.J. & Nulit, R. 2019b. Impact of NaCl, KCl, MCl2, MgSO4 and CaCl2 on the seed germination and seedling growth of cucumber (Cucumis sativus cv. MTi2). Plant Archives 19(2): 3111-3117.
  27. Mohammed, S.J. & Nulit, R. (2020 a). Impact of NaCl, KCl, MCl2, MgSO4 and CaCl2 on the leaf anatomy of cucumber (Cucumis Sativus cv. mti2). Plant Archives (09725210) 20(2): 2802-2806.
  28. Mohammed, S.J. & Nulit, R. 2020b. Seed priming improves the germination and early growth of turnip seedlings under salinity stress.‏ Periodico Tche Quimica 17(35): 73-82.
  29. Monforte, A. J.; Diaz, A.; Cano-Delgado, A. & van der Knaap, E. 2014. The genetic basis of fruit morphology in horticultural crops: Lessons from tomato and melon. Journal of Experimental Botany 65: 4625-4637.
  30. Nastari-Nasrabadi, H. & Saberali, S.F. 2020. Effect of bio-fertilizer and salicylic acid on some physiological traits of melon under salinity stress. Journal of Horticultural Science 34(1): 131-144.‏
  31. Pitrat, M. 2008. Melon. In: Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. New York, NY: Springer New York. pp: 283-315.
  32. Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot P. & Mommer, L. 2012. Biomass allocation to leaves stems and roots: meta-analyses of interspecific variation and environmental control. Tansley review. New Phytologist 193: 30-50.
  33. Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M. & Thomas, R. J. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum 38: 282-295.
  34. Roussos, P.; Gasparatos, D.; Kyriakou, C.; Tsichli, K.; Tsantili, E. & Haidouti, C. 2013. Growth, nutrient status and biochemical changes in sour orange (Citrus aurantium L.) plants subjected to sodium chloride stress. Communications in Soil Science and Plant Analysis 44: 805-816.
  35. Sarabi, B.; Bolandnazar, S.; Ghaderi, N. & Ghashghaie, J. 2017. Genotype difference in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiology and Biochemistry 119: 294-311.
  36. Senaratna, T.; Touchell, D.; Bunn, E. & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30: 157-161.
  37. Senaratna, T.; Touchell, D.; Bunn, E. & Dixon, K. 2000. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30: 157-161.
  38. Shao, Q.S.; Wang, H.Z.; Guo, H.P.; Zhou, A.C.; Huang, Y.Q. & Sun, Y.L. 2014. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE 9: e85996.
  39. Snedecor, G.W. & Cochran, W.G. 1980. Statistical methods. 7th ed. Iowa State University USA, 80-86.
  40. Taşgın, E.; Atıcı, Ö.; Nalbantoğlu, B. & Popova, L.P. 2006. Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67: 710-715.
  41. Thakur, H.; Sharma, S. & Thakur, M. 2019. Recent trends in muskmelon (Cucumis melo L.) research: An overview. The Journal of Horticultural Science and Biotechnology 94(4): 533-547.
  42. Uniyal, R.C. & Nautiyal, A.R. (1998). Seed germination and seedling extension growth in Ougeinia dalbergioides Benth under water and salinity stress. New For., 16: 265-272.
  43. Van Zelm, E.; Zhang, Y. & Testerink, C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71: 403-433.
  44. Wang, L.; Wang, Y.; Wang, X.; Li, Y.; Peng, F. & Wang, L. 2014. Regulation of POD activity by pelargonidin during vegetative growth in radish (Raphanus sativus L.). Scientia Horticulturae 174: 105-111.
  45. Witham, F.H.; Blaydes, D.F.; and Devlin, R.M. 1986. Exercises in Plant Physiology (2nd Eds). PWS Publishers, Boston, USA.
  46. Yan, M.; Mao, J.; Wu, T.; Xiong, T.; Huang, Q.; Wu, H. & Hu, G. 2023. Transcriptomic Analysis of Salicylic Acid Promoting Seed Germination of Melon under Salt Stress. Horticulturae 9: 375.
  47. Zhang, N.; Zhao, B.; Zhang, H.-J.; Weeda, S.; Yang, C.; Yang, Z.-C.; Ren, S. & Guo, Y.-D. 2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research 54: 15-23.